13 research outputs found

    Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals

    Get PDF
    BACKGROUND: Gene losses played a role which may have been as important as gene and genome duplications and rearrangements, in modelling today species' genomes from a common ancestral set of genes. The set and diversity of protein-coding genes in a species has direct output at the functional level. While gene losses have been reported in all the major lineages of the metazoan tree of life, none have proposed a focus on specific losses in the vertebrates and mammals lineages. In contrast, genes lost in protostomes (i.e. arthropods and nematodes) but still present in vertebrates have been reported and extensively detailed. This probable over-anthropocentric way of comparing genomes does not consider as an important phenomena, gene losses in species that are usually described as "higher". However reporting universally conserved genes throughout evolution that have recently been lost in vertebrates and mammals could reveal interesting features about the evolution of our genome, particularly if these losses can be related to losses of capability. RESULTS: We report 11 gene families conserved throughout eukaryotes from yeasts (such as Saccharomyces cerevisiae) to bilaterian animals (such as Drosophila melanogaster or Caenorhabditis elegans). This evolutionarily wide conservation suggests they were present in the last common ancestors of fungi and metazoan animals. None of these 11 gene families are found in human nor mouse genomes, and their absence generally extends to all vertebrates. A total of 8 out of these 11 gene families have orthologs in plants, suggesting they were present in the Last Eukaryotic Common Ancestor (LECA). We investigated known functional information for these 11 gene families. This allowed us to correlate some of the lost gene families to loss of capabilities. CONCLUSION: Mammalian and vertebrate genomes lost evolutionary conserved ancestral genes that are probably otherwise not dispensable in eukaryotes. Hence, the human genome, which is generally viewed as being the result of increased complexity and gene-content, has also evolved through simplification and gene losses. This acknowledgement confirms, as already suggested, that the genome of our far ancestor was probably more complex than ever considered

    FIGENIX: Intelligent automation of genomic annotation: expertise integration in a new software platform

    Get PDF
    BACKGROUND: Two of the main objectives of the genomic and post-genomic era are to structurally and functionally annotate genomes which consists of detecting genes' position and structure, and inferring their function (as well as of other features of genomes). Structural and functional annotation both require the complex chaining of numerous different software, algorithms and methods under the supervision of a biologist. The automation of these pipelines is necessary to manage huge amounts of data released by sequencing projects. Several pipelines already automate some of these complex chaining but still necessitate an important contribution of biologists for supervising and controlling the results at various steps. RESULTS: Here we propose an innovative automated platform, FIGENIX, which includes an expert system capable to substitute to human expertise at several key steps. FIGENIX currently automates complex pipelines of structural and functional annotation under the supervision of the expert system (which allows for example to make key decisions, check intermediate results or refine the dataset). The quality of the results produced by FIGENIX is comparable to those obtained by expert biologists with a drastic gain in terms of time costs and avoidance of errors due to the human manipulation of data. CONCLUSION: The core engine and expert system of the FIGENIX platform currently handle complex annotation processes of broad interest for the genomic community. They could be easily adapted to new, or more specialized pipelines, such as for example the annotation of miRNAs, the classification of complex multigenic families, annotation of regulatory elements and other genomic features of interest

    CASSIOPE: An expert system for conserved regions searches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding genome evolution provides insight into biological mechanisms. For many years comparative genomics and analysis of conserved chromosomal regions have helped to unravel the mechanisms involved in genome evolution and their implications for the study of biological systems. Detection of conserved regions (descending from a common ancestor) not only helps clarify genome evolution but also makes it possible to identify quantitative trait loci (QTLs) and investigate gene function.</p> <p>The identification and comparison of conserved regions on a genome scale is computationally intensive, making process automation essential. Three key requirements are necessary: consideration of phylogeny to identify orthologs between multiple species, frequent updating of the annotation and panel of compared genomes and computation of statistical tests to assess the significance of identified conserved gene clusters.</p> <p>Results</p> <p>We developed a modular system superimposed on a multi-agent framework, called CASSIOPE (Clever Agent System for Synteny Inheritance and Other Phenomena in Evolution). CASSIOPE automatically identifies statistically significant conserved regions between multiple genomes based on automated phylogenies and statistical testing. Conserved regions were searched for in 19 species and 1,561 hits were found. To our knowledge, CASSIOPE is the first system to date that integrates evolutionary biology-based concepts and fulfills all three key requirements stated above. All results are available at <url>http://194.57.197.245/cassiopeWeb/displayCluster?clusterId=1</url></p> <p>Conclusion</p> <p>CASSIOPE makes it possible to study conserved regions from a chosen query genetic region and to infer conserved gene clusters based on phylogenies and statistical tests assessing the significance of these conserved regions.</p> <p><b>Source code </b>is freely available, please contact: <email>[email protected]</email></p

    Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes.

    Get PDF
    Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses

    Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis.

    Get PDF
    The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode

    The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    Get PDF
    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including <it>Meloidogyne incognita</it>, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms.</p> <p>Results</p> <p>Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (<it>Brugia malayi</it>, <it>Caenorhabditis elegans</it>, <it>M. hapla</it>, <it>M. incognita</it>, <it>Pristionchus pacificus</it>) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)<sub><it>n</it></sub>, (AG)<sub><it>n </it></sub>and (CT)<sub><it>n </it></sub>were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in <it>P. pacificus</it>, all the most frequent trinucleotide motifs were AT-rich, with (AAT)<sub><it>n </it></sub>and (ATT)<sub><it>n </it></sub>being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species <it>M. incognita</it>. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms.</p> <p>Conclusions</p> <p>Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related <it>Meloidogyne </it>species. 2,245 di- to hexanucleotide loci were identified in the genome of <it>M. incognita</it>, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.</p

    Horizontal gene transfer in nematodes: a catalyst for plant parasitism?

    No full text
    The origin of plant parasitism within the phylum Nematoda is intriguing. The ability to parasitize plants has originated at least three times independently during nematode evolution and, as more molecular data has emerged, it has become clear that multiple instances of horizontal gene transfer (HGT) from bacteria and fungi have played a crucial role in the nematode’s adaptation to this new lifestyle. The first reported HGT cases in plant-parasitic nematodes (PPN) were genes encoding plant cell wall-degrading enzymes. Other putative examples of HGT were subsequently described, including genes that may be involved in the modulation of the plant’s defense system, the establishment of a nematode feeding site and the synthesis or processing of nutrients. Although in many cases it is difficult to pinpoint the donor organism, candidate donors are usually soil dwelling and are either plant-pathogenic or plant-associated microorganisms, hence occupying the same ecological niche as the nematodes. The exact mechanisms of transfer are unknown, although close contacts with donor microorganisms, such as symbiotic or trophic interactions, are a possibility. The widespread occurrence of horizontally transferred genes in evolutionarily independent plant-parasitic nematode lineages suggests that HGT may be a prerequisite for successful plant parasitism in nematodes
    corecore